回溯算法

背景

回溯法(backtrack)常用于遍历列表所有子集,是 DFS 深度搜索一种,一般用于全排列,穷尽所有可能,遍历的过程实际上是一个决策树的遍历过程。时间复杂度一般 O(N!),它不像动态规划存在重叠子问题可以优化,回溯算法就是纯暴力穷举,复杂度一般都很高。

模板

result = []
func backtrack(选择列表,路径):
    if 满足结束条件:
        result.add(路径)
        return
    for 选择 in 选择列表:
        做选择
        backtrack(选择列表,路径)
        撤销选择

核心就是从选择列表里做一个选择,然后一直递归往下搜索答案,如果遇到路径不通,就返回来撤销这次选择。

常见例题

集合类

子集

78. 子集

给你一个整数数组 nums ,数组中的元素 互不相同 。返回该数组所有可能的子集(幂集)。

子集 II

90. 子集 II

给定一个可能包含重复元素的整数数组 nums,返回该数组所有可能的子集(幂集)。说明:解集不能包含重复的子集。

排列类

全排列

46. 全排列

给定一个 没有重复 数字的序列,返回其所有可能的全排列。

思路:需要记录已经选择过的元素,满足条件的结果才进行返回。这里要注意在做选择时记录,回溯时撤销。

全排列 II

47. 全排列 II

给定一个可包含重复数字的序列,返回所有不重复的全排列。

组合类

组合总和

39. 组合总和

给定一个无重复元素的数组 candidates 和一个目标数 target ,找出 candidates 中所有可以使数字和为 target 的组合。

candidates 中的数字可以无限制重复被选取。

说明:

  • 所有数字(包括 target)都是正整数。

  • 解集不能包含重复的组合。

电话号码的字母组合

17. 电话号码的字母组合

给定一个仅包含数字 2-9 的字符串,返回所有它能表示的字母组合。答案可以按 任意顺序 返回。

数字到字母的映射与电话按键相同

最后更新于